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Abstract
Two sides play a game of equal-speed pursuit and capture on a complete Riemann-
ian manifold of dimension at least two, with or without boundary. When capture is 
defined strictly, the evader can always escape capture indefinitely, although the pur-
suer can generally close within arbitrary distance in finite time.
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1  Introduction

The lion and man problem, first posed by Rado in the late 1930s, is a classical game 
of pursuit and capture in which two players move about a circular arena in ℝ2 with 
equal maximum speeds, one trying to reach the same position as the other. The final 
word on this problem was delivered by Besicovitch in 1952 and publicized by Lit-
tlewood in 1953: the evader always wins, regardless of the strategy of the pursuer 
(Littlewood 1986).

The temptation to modify and expand this problem has proved irresistible. Addi-
tional pursuers (Chodun 1989; Hagedorn and Breakwell 1976; Von Moll et al. 2019) 
and restrictions on the evader’s movement (Croft 1964; Kuchkarov 2010) have been 
introduced to increase the possibility of capture, while decoys (Lewin 1973) and 
blockers (Fisac and Sastry 2015) have been posited to decrease that possibility. The 
assumption of equal maximal velocities has been loosened (Flynn 1974), as has the 
requirement of strict capture (Lewin 1986; Alonso et al. 1992; Yufereva 2018; Von 
Moll et al. 2022). Discrete-time analogues have been formulated and analyzed (Kop-
party and Ravishankar 2005; Mycielski 1988; Sgall 2001), as have pursuit games 
on graphs (Adler et  al. 2003) and less-structured spaces Alexander et  al. (2006); 
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Barmak (2018). Finally, a number of authors have considered the possibility that 
one or both of the players possesses less-than-complete information about the game 
state (Chernousko and Melikyan 1975; Hexner 1979; Yavin 1986).

In this paper, we consider Rado’s lion and man problem (continuous time, sin-
gle pursuer with equal velocity, strict capture condition) on an arbitrary Riemannian 
manifold, a generalized environment in which the flavor of the original formulation 
is nonetheless maintained.

A. Melikyan and others have considered related pursuit problems on certain two-
dimensional manifolds, (Hovakimyan and Melikyan 2000; Melikyan 1998, 2007), 
though their focus has always been on unequal-speed problems where capture is 
assured (faster pursuer) or best approach is well-defined (faster evader). As we shall 
see, the equal-speed problem represents a boundary case where more specialized 
techniques are needed.

The structure of the paper is as follows. Sections 2 and 3 establish notation and 
terminology, borrowing from both Riemannian geometry and the theory of differen-
tial games. Here we discuss the game-theoretic notion of a payoff function and see 
why it cannot be easily applied to general equal-speed pursuit problems.

Section 4 describes two historically-important pursuit strategies (radial and Besi-
covitch) in the plane, while Sects. 5 and 6 extend the ideas of those strategies to 
general Riemannian manifolds. We shall see that such strategies can be profitably 
compared to corresponding ones in two-dimensional, constant-curvature hyperbolic 
and spherical spaces. Such comparisons lead to our first major result, Theorem 1, 
which establishes that under very weak conditions, an equal-speed pursuer can never 
catch its prey on a Riemannian manifold.

Section  7 considers the natural question of nearest approach, leading to the 
paper’s second major result: when following the successful strategy outlined in The-
orem 1, the evader cannot prevent an equal-speed pursuer from closing to within any 
arbitrary distance (Theorem 2).

Section 8 considers these new theorems in light of the seemingly contradictory 
result of Bollobás, et. al (Bollobás et  al. 2012), while Sect.  9 offers brief closing 
thoughts.

2 � Preliminaries

In the spirit of the original lion and man problem, we assume that each player moves 
along a piecewise-differentiable path in a complete Reimannian manifold M, which 
may perhaps include a boundary �M . Formally,

where the functions fP and fE in these state equations define the players’ instantane-
ous movements. The speeds of the players are bounded by a common value v, which 
may be taken to be identically 1 without loss of generality, an assumption that we 
will make throughout.

(1)
�P(t) ∈ M, � �

P
(t) = fP(�P, �E),

�E(t) ∈ M, � �
E
(t) = fE(�P, �E),
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Both pursuer and evader have instantaneous and complete knowledge of the game 
state but no prescience of the opponent’s strategy. The sets of all possible evader and 
pursuer paths for specified starting points E0 and P0 , respectively, are thus given by

namely the Lipschitz paths in M with the given starting points. Here and elsewhere 
in this paper, the distance function d(x, y) on M represents the solution to the vari-
ational problem

where G is the usual nonsingular, positive-definite Riemannian metric tensor, the 
angled braces represent the standard scalar product, and the minimum ranges over 
all piecewise-continuous paths �(t) in M connecting x to y. At least one geodesic 
(locally distance-minimizing path) from x to y realizing this minimum is always 
guaranteed to exist on a complete manifold (Do Carmo 1992).

More generally, the integral in Eq. 3 defines the length L of any curve � connect-
ing x and y.

Adapting terminology from (Bollobás et al. 2012), we define a non-anticipative 
evader strategy to be a map �E ∶ ΓP → ΓE such that for any two pursuer paths �P and 
�̃P,

while a non-anticipative pursuer strategy is a map �P ∶ ΓE → ΓP such that

for any evader paths �E and �̃E . In other words, if two evader (or pursuer) paths coin-
cide through time t0 , then the corresponding pursuer (or evader) paths will coincide 
as well. This encodes both the deterministic quality of the game as well as the stipu-
lation that neither player has foreknowledge of the other’s actions.

Capture is said to occur if �P(T) = �E(T) for some finite time T. The pursuer is 
said to win if such a T exists, while the evader is said to win if it does not.

3 � Differential games of pursuit and capture

A game-theoretic approach has often been applied to questions of pursuit and cap-
ture. Isaac’s text is seminal (Isaacs 1965); see (Weintraub et  al. 2020) for a more 
recent survey of work done using this perspective.

A defining feature of the game-theoretic approach is the positing of a payoff func-
tion which takes the paths �P and �E as arguments. If capture occurs, for instance in 
the case of a faster pursuer, this takes the form

(2)

ΓE = {�E ∶ [0,∞) → M ∶ �E(0) = E0, d(�E(t1), �E(t2)) ≤ |t2 − t1| ∀t1, t2 ≥ 0}

ΓP = {�P ∶ [0,∞) → M ∶ �P(0) = P0, d(�P(t1), �P(t2)) ≤ |t2 − t1| ∀t1, t2 ≥ 0},

(3)d(x, y) = min
� ∫�

√
⟨G(�)��, ��⟩ dt

(4)�P(t) = �̃P(t) for t ∈ [0, t0] ⟹ �E(�P)(t) = �E(�̃P)(t) for t ∈ [0, t0].

(5)�E(t) = �̃E(t) for t ∈ [0, t0] ⟹ �P(�E)(t) = �P(�̃E)(t) for t ∈ [0, t0],
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while if capture does not occur, for instance in the case of a faster evader, it is instead

indicating a game of approach (Harutunian 1998).
In each of the above cases, the pursuer seeks to minimize Ji while the evader seeks 

to maximize it, making both games zero-sum. The value of the game is then defined as 
a minimax of the appropriate payoff function Ji.

For many configurations on a wide variety of manifolds, best play for both play-
ers always consists of moving along the unique minimal geodesic connecting �P(t) 
and �E(t) , a direct consequence of the first variational formula. Considering the fast-
evader case on two-dimensional manifolds, for instance, Melikyan and Ovakimyan 
Melikyan and Ovakimyan (1993) give the gradients of the distance function d (as 
defined in section 2) when first �E and then �P are held constant as

where a and b are the outward unit tangent vectors to the geodesic segment � con-
necting �P to �E,

Then the equality

implies that optimal movement for each player must be parallel to a and b. Start-
ing configurations (P0,E0) where this strategy is well-defined for both players and 
all times t ≥ 0 are said to make up the primary domain of the configuration space. 
Many of the references cited in this section have focused on identifying and analyz-
ing the secondary domain of specific manifolds, that is, the sets of configurations for 
which the direct approach is more ambiguous.

Such game-theoretic tools do not carry over well to the case of equal-speed pur-
suit and evasion. As we shall see in sections 5-7, the minimax of the payoff function 
J1 (time to capture) is always infinite while the minimax of J2 (minimum distance) is 
usually zero. Thus it is necessary to either posit a less-standard payoff function, for 
instance by considering non-zero capture radius, or adopt more specialized techniques. 
We opt for the latter approach.

(6)J1(𝛾P, 𝛾E) = min
t>0

{t ∶ 𝛾P(t) = 𝛾E(t)},

(7)J2(�P, �E) = min
t≥0 d(�P(t), �E(t)),

(8)min
�P∈ΓP

max
�E∈ΓE

Ji = max
�E∈ΓE

min
�P∈ΓP

Ji

(9)dP(�P, �E) = G(�P)a, dE(�P, �E) = G(�E)b,

(10)a = −��(0)∕|��(0)|, b = ��(d)∕|��(d)|, d = d(�P, �E).

(11)
d

dt
d(�P, �E) = ⟨dP(�P, �E), � �P⟩ + ⟨dE(�P, �E), � �E⟩
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4 � Strategy‑specific approaches

A more geometric approach is profitable in a wide variety of circumstances, includ-
ing but not limited to equal-speed pursuit and evasion. See Nahin (2012) for an over-
view of some of the work that has been done from this perspective.

Several particular strategies are worth mentioning at the outset in light of their 
historical importance, their relevance to the present problem, and their overall utility.

First and foremost among these are the natural strategies of pure pursuit and pure 
evasion, where one or both of the parties moves at maximum speed along the com-
mon geodesic connecting them, the one toward its opponent and the other away. In 
the absence of other constraints, these strategies are optimal for both players, as indi-
cated in Sect. 3. In particular, in ℝn neither player can improve on them, regardless 
of their relative maximal speeds. The geometry of the playing arena thus becomes a 
significant complicating factor in the problem.

In the equal-speed case, the strategy of pure pursuit is ineffective even in compact 
arenas. In the original lion and man problem in the unit disk, for instance, an evader 
circling around the boundary S1 will never be intercepted by such a pursuer (Hatha-
way et al. 1921). This fact illustrates a general problem with the strategy of pure pur-
suit: the chaser ultimately finds itself trailing behind the evader and unable to make 
up ground fast enough to effect capture, even when the evader must curve to avoid 
the arena boundary (Nahin 2012).

In ℝ2 , the situation is even more dire. Against a strategy of pure pursuit, an evader 
with maximum speed equal to that of its pursuer can lead that pursuer to any point 
in the plane that it likes without allowing it to close more than an arbitrarily small 
distance (Gard 2018). The chase, in that case, is worse than hopeless.

In Rado’s original unit disk problem, however, the strategy of pure pursuit can be 
improved upon. In his presentation (Littlewood 1986), Littlewood suggests as obvi-
ous the strategy of radial pursuit, which initially seems to resolve the lion and man 
problem fully in the lion’s favor. Under this strategy, the pursuer always stays on the 
radius connecting the evader to the center of the arena, closing inexorably along it 
and inevitably pressing its quarry to the wall. If the evader circles around the bound-
ary of the arena as suggested above, the pursuer traces a semicircular path of unit 
diameter and effects capture at t = �∕2 , as shown in Fig. 1.

Although this radial strategy is in a certain sense optimal for the pursuer, as 
shown in Sect. 7, the evader can do better than simply orbiting around the bound-
ary of the arena. Under the Besicovitch strategy, it begins at an interior point of 
the arena, then spirals asymptotically towards its boundary, somehow keeping the 

Fig. 1   The radial strategy in the 
unit disk
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pursuer at bay forever. This strategy is detailed in the next section, where it will 
be shown that the restriction to a unit disk in ℝ2 is unnecessary.

5 � Evasion in Riemannian manifolds: radial pursuit

The evader strategy described below assumes an initial state in which E0 lies 
within a geodesic ball centered at P0 , an assumption validated by the following 
standard result.

Theorem  At any point x of a Riemannian manifold M, there exists an 𝜖 > 0 such that 
the exponential map expx ∶ B𝜖(0) ⊂ TxM → M is a diffeomorphism of the ball of 
radius � in ℝn onto an open subset of M.

The exponential map expx(w) can be thought of as moving a distance |w| along 
the geodesic beginning at x and extending in the direction specified by w . See for 
example Do Carmo (1992). Here TxM represents the set of all tangent vectors to 
M at the point x, while TM (which we will encounter later) refers to the disjoint 
union of all such TxM over all x ∈ M.

It follows immediately that the tangent bundle is trivial within a geodesic ball 
and that all geodesics are distance-minimizing there.

As there is no chance of confusion in what follows, we will also denote the 
image of the above exponential map B�.

If the initial game state does not satisfy E0 ∈ B�(P0) for some � , the evader 
need only wait for the pursuer to draw closer, moving off the boundary �M first 
if necessary. In what follows, we show that the evader can remain inside B�(P0) 
indefinitely without allowing capture, no matter the pursuer’s strategy nor the 
radius � of the geodesic ball.

To begin, consider the case where the pursuer follows a radial strategy akin to 
the one described in Sect. 4. That is, it keeps to the geodesic segment connecting 
�E(t) and P0 , gradually closing on its target in an attempt to drive it toward the 
boundary of B�(P0) where it might hope to effect capture. We will later show that 
other strategies can only be less optimal.

The evader moves in a piecewise-geodesic fashion, the kth piece �k beginning in 
a direction orthogonal to the common geodesic segment connecting P0, �P(tk−1), 
and �E(tk−1) , which we will denote �k−1 . By this convention, �0 represents 
the minimal geodesic initially separating the players. For k ≥ 1 , let lk = L(�k) 
denote the length of the evader’s kth step, and let rk = L(�k) denote the distance 
from the evader to the ball’s center at the end of the kth step. Here we take 
�k−1(0) = P0, �k−1(rk−1) = �E(tk−1) = �k(0) , and �k(lk) = �E(tk) as pictured in Fig. 2.

The evader chooses lk = c∕k , where the constant c > 0 will be specified later. It 
is immediate that such a path continues indefinitely for any c > 0 . We need only 
show (1) that c can be chosen so that the path lies entirely within B�(P0) and (2) 
that �P(t) ≠ �E(t) at any point along any of these geodesic segments.
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The configuration shown in Fig. 2, defines a geodesic hinge (Chavel 2006) in M 
with angle � = �∕2 at the point �E(tk−1) . The following theorem is relevant.

Theorem  (Alexandrov-Topogonov) Let (�k−1, �k, �) be a geodesic hinge in a com-
plete Riemannian manifold whose sectional curvature K is bounded below by KL , 
and assume the geodesic �k−1 is minimal. Let (�k−1, �k, �) be a geodesic hinge in the 
two-dimensional space �

2
KL

 of constant curvature KL such that 
L(�k−1) = L(�k−1) = rk−1 and L(�k) = L(�k) = lk . Then

In other words, the distance between the endpoints of the hinge are closer together 
than they would be in a model space �2

KL
 with lesser curvature.

Similarly, if K is bounded above by KU , then

provided lk ≤ �∕
√
KU  (Berger 2003).

The sectional curvature K of a Riemannian manifold M is a continuous real-
valued function on the two-dimensional subspaces of TM (Bishop and Crittenden 
2011). The latter, the Grassmanian bundle G(2,ℝn) , is trivial in B�(P0) , hence

represents a continuous function on a compact manifold. As such, it attains both 
upper and lower bounds, KL and KU . In what follows, we assume KL < 0 and 
KU > 0 , loosening those bounds as necessary.

Figure  3 presents the hinge from figure  2 as a geodesic right triangle together 
with its comparison triangle in ℍ2

KL
 , the hyperbolic plane with constant negative cur-

vature KL . For each k ≥ 1 , the length rk of the hypotenuse of the comparison triangle 
is greater than its counterpart in M. This length can be also computed explicitly 
using the hyperbolic Pythagorean theorem (Brannan et al. 1999).

(12)d(�k−1(0)), �k(lk)) ≤ d(�k−1(0), �k(lk))

(13)d(�k−1(0)), �k(lk)) ≥ d(�k−1(0), �k(lk)).

(14)K ∶ B� × G(2,ℝn) → R.

(15)cosh
rk

R
= cosh

rk−1

R
cosh

lk

R
, R = 1∕

√
−KL.

Fig. 2   The kth step in a successful evader strategy
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Thus after the first n steps, the distance of the evader from P0 is bounded by rn , 
where

To control the right-hand side, we use the fact that cosh x ≤ ex
2 when x ≥ 0.

And hence

where the evader chooses c > 0 . Then for sufficiently small c, rn ≤ rn < r0 + 𝛿 for 
any fixed 𝛿 > 0 . Not only does the evader not leave the ball B� , it need not move any 
farther away from its center, P0 , than it might wish.

Just as the above comparison with ℍ2
KL

 proves that the evader need never leave B� , 
the following comparison with �2

KU
 shows that the pursuer can never effect capture.

Suppose by way of contradiction that the pursuer is able to capture the evader on one 
of these steps, arriving at a point Q along some �k after traveling the same distance 
Δt ≤ lk as its quarry. Let dk−1 = d(�P(tk−1), �E(tk−1)) denote the the initial distance 
between players at the start of the kth step and dΔt = d(�P(tk−1),Q) be the distance 
between the pursuer’s initial position and the point of capture, a distance which need 
not necessarily correspond to any part of the path �P . Then Δt is bounded below by dΔt , 
which is in turn bounded below by the hypotenuse of the corresponding right triangle 
in �2

KU
 , the two-sphere with curvature KU , again by the Alexandrov-Toponogov theo-

rem, provided that Δt < 𝜋∕
√
KU . Since the step size lk = c∕k bounds Δt and is 

(16)cosh
rn

R
= cosh

r0

R

n∏

k=1

cosh
lk

R
= cosh

r0

R

n∏

k=1

cosh
c

Rk
.

(17)

log cosh
rn

R
= log cosh

r0

R
+

n∑

k=1

log cosh
(

c

Rk

)

≤ log cosh
r0

R
+

n∑

k=1

(
c

Rk

)2

≤ log cosh
r0

R
+

∞∑

k=1

(
c

Rk

)2

= log cosh
r0

R
+

c2

R2
⋅

�2

6

(18)cosh
rn

R
≤ (

e�
2c2∕6R2

)
cosh

r0

R
,

Fig. 3   Comparison triangles
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controlled by the evader through the constant c, this last condition can be assumed to be 
satisfied.

The situation is illustrated in Fig. 4, where Δt ≥ dΔt ≥ dΔt . Here the left rightmost 
triangle lies in the model space �2

KU
 while the others lie in M.

Applying the spherical Pythagorean theorem (Brannan et al. 1999) to the compari-
son triangle,

In order for this to be true while 0 < dΔt ≤ Δt , it must be the case that Δt∕R > 𝜋 , 
that is, Δt > 𝜋KU . Recall that on the kth step, Δt ≤ lk = c∕k where c is controlled by 
the evader. Thus it need only choose c < 𝜋KU to ensure that capture never occurs on 
any segment �k.

We have proved the following.

Lemma 1  In a complete Riemannian manifold, the radial strategy of pursuit fails to 
drive the evader out of any open geodesic ball that includes the evader.

6 � Evasion in Riemannian manifolds: non‑radial pursuit

Of course, the pursuer is under no obligation to follow a radial strategy. Let us now 
assume that at the start of the kth step, the pursuer’s position �P(tk−1) does not lie on the 
geodesic connecting P0 and �E(tk−1).

The evader’s strategy is largely unchanged. On its kth step, it moves along a geodesic 
orthogonal to the segment connecting �P(tk−1) and �E(tk−1) , traveling a total distance of 
length c/k, where c is chosen as in the proof of Lemma 1. Judicious choice of the start-
ing direction � �

k
(0) will insure that its terminal distance rk from P0 is no greater than if 

the pursuer had chosen the radial strategy.
Let �k−1 be the geodesic segment beginning at �P(tk−1) and extending to �E(tk−1) . 

Then for k ≥ 1 , � �
k−1

(dk−1) and ��
k−1

(rk−1) span a two-dimensional subspace of TM at 
�E(tk−1) . The evader chooses its direction of flight � �

k
(0) in this subspace so that the 

angle ∠(−��
k−1

(rk−1), �
�
k
(0)) is acute, as pictured in Fig. 5.

The points P0, �E(tk−1) , and �E(tk) form a geodesic hinge with side lengths rk−1 
and lk . The enclosed angle � has measure strictly less than �∕2 by construction, 

(19)
cos

�
dΔt

R

�
= cos

�
Δt

R

�
cos

�
dk−1

R

�
, R =

1√
KU

≤ cos
�
Δt

R

�

Fig. 4   The dream of capture
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while the loose vertices P0 and �E(tk) are separated by distance rk . Figure 6 shows 
this triangle in M together with its analog in ℍ2

KL
 , where the connecting side must 

have length r̃k > rk by the Alexandrov-Toponogov theorem.
We apply the hyperbolic law of cosines in ℍ2

KL
(Brannan et al. 1999).

where rk is the length of the hypotenuse of the corresponding geodesic right triangle 
in ℍ2

KL
 , as in the proof of Lemma 1. Thus, rk ≤ r̃k ≤ rk , and we have proved the 

following.

Theorem  1  In a continuous-time strict-capture game of pursuit and evasion 
in a Riemannian manifold M with dim(M) ≥ 2 , and boundary �M (possibly 
empty), the evader always wins. That is, there exists an evader strategy for which 
d(𝛾P(t), 𝛾E(t)) > 0 for all t ≥ 0 , regardless of the strategy chosen by the pursuer.

7 � The question of approach

Given the impossibility of capture, it is natural to consider the question of 
approach. Just how close can a pursuer hope to come to an evader making use of 
the strategy described above? More formally, we wish to investigate the possibil-
ity of minimizing the slow-pursuer payoff function

(20)

cosh
r̃k

R
= cosh

rk−1

R
cosh

lk

R
− sinh

rk−1

R
sinh

lk

R
cos 𝛼

≤ cosh
rk−1

R
cosh

lk

R

= cosh
rk

R
,

Fig. 5   The evader’s kth step 
against a non-radial strategy

Fig. 6   Geodesic triangles in M and ℍ2

K
L
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when �P ranges over all possible strategies in ΓP and �E follows the Besicovitch strat-
egy. We will prove the following.

Theorem  2  Against the Besicovitch evader strategy, the pursuer in a continuous-
time strict-capture pursuit game on a Riemannian manifold with boundary can close 
to within any specified distance of the evader in finite time. In particular,

When combined with Theorem 1, this implies that the payoff function J2 does not 
have a well-defined minimum over ΓP when �E takes the Besicovitch strategy.

Proof. Consider a radial pursuer strategy, that is, one in which the pursuer remains 
always on the geodesic connecting P0 to the evader’s current position �E(t) . Letting rE(t) 
and rP(t) , respectively, represent the evader’s and pursuer’s distance to P0 , we will show 
that if it is not the case that rP → rE , then r�

P
(t) > 𝛿 for some fixed 𝛿 > 0 . This would 

imply that the pursuer eventually exits the arena B�(P0) , contradicting theorem 1.
Each player’s position can be decomposed into radial and transverse components 

using induced polar coordinates,

When the pursuer follows a radial strategy, the Sn−1 component of these coordinates 
is always the same for both. Let � = (�1,… , �n−1) represent the common angular 
component of their coordinates, so the players positions can be written (rP, �) and 
(rE, �) respectively. Then by Gauss’s Lemma, the metric tensor has a block diagonal 
form and the tangent vector components r′

E
 and �′

E
 are orthogonal, as are r′

P
 and �′

P
 . 

In these coordinates, the unit-speed condition on �E(t) becomes

Hence

This quantifies our intuition that a Besicovitch evader’s motion is primarily transver-
sal. The result then follows from consideration of the same equations for the pursuer.

(21)J2 = min
t≥0 d(�P(t), �E(t))

(22)lim
t→∞

d(�P(t), �E(t)) = 0.

(23)expP0
∶ TP0

M = ℝ
+ × Sn−1 → B�(P0).

(24)
(
r�
E

)2
+ r2

E
||��||

2
= 1

(25)

||𝜃�||
2
=

1

r2
E

[
1 −

(
r�
E

)2]

<
1

r2
E
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If the distance between pursuer and evader does not go to zero over time, then the 
ratio rP∕rE has an upper bound strictly less than one and the quantity r′

P
 has a lower 

bound strictly greater than zero. In other words, the pursuer’s distance rP from P0 is 
unbounded. This contradiction implies that rP → rE , proving the theorem.

8 � A note on continuity

In Bollobás et  al. (2012), Bollobás, Leader, and Walters prove a strong result in 
favor of the pursuer which at first glance would seem to contradict Theorem 1.

Theorem  (Bollobás/Leader/Walters) In the lion-and-man game in the closed unit 
disk, the evader does not have a continuous winning strategy.

Recall that an evader strategy is a function �E ∶ ΓP → ΓE such that for any 
�P, �̃P ∈ ΓP,

A continuous strategy, then, is simply a map �E that is continuous in the usual 
topological sense. This stipulation is what allows the above result to coexist with 
Theorem 1.

The techniques of proof used in Bollobás et al. (2012) extend directly to the Rie-
mannian context, so we take this opportunity to recapitulate that result in more gen-
eral terms.

Suppose that in the continuous-time, strict-capture pursuit game treated in this 
paper, the evader has a continuous winning strategy �E ∶ ΓP → ΓE on the closed 
arena B�  , which can be obtained in the main theorem by shrinking � slightly if nec-
essary. For every point x ∈ B�  , let �x(t) be the unit-speed geodesic segment begin-
ning at P0 and terminating at x at time t = Tx . Noting that �x ∈ ΓP , define a function 
f (x) = �E(�x)(Tx) , mapping B�  to itself. Then the function

is a continuous map from the closed ball of radius � in ℝn to itself and must therefore 
have a fixed point (Hatcher 2005). Thus f(x) has a fixed point as well, one for which 
�(Px)(T) = Px(T) . In other words, there exists an evader starting point x ∈ B�  for 
which the pursuer wins. This contradiction proves the following.

(26)

(
r�
P

)2
= 1 − r2

P
||𝜃�||

2

> 1 − r2
P

(
1

r2
E

)

= 1 −

(
rP

rE

)2

(27)�P(t) = �̃P(t) for t ∈ [0, t0] ⟹ �(�P)(t) = �(�̃P)(t) for t ∈ [0, t0].

(28)f (y) = (exp−1◦f◦exp)(y)
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Theorem 3  In a continuous-time strict-capture pursuit game in geodesic ball con-
tained in a Riemannian manifold, the evader cannot have a winning strategy.

It immediately follows that the strategy outlined in Theorem 1 must not be contin-
uous. This can be seen directly by considering a one-parameter family of configura-
tions with �P(t0) = (rP(t0), �1,… , �n−1) , t0 ≠ 0 , and Eu(t0) = (rE, �1 + u, �2,… , �n−1) 
defined for u in an interval including zero. According to the strategy of theorem 1, if 
u > 0 , the transversal component of the evader’s flight lies in the �1 direction, while 
if u < 0 is lies in the −�1 direction. Since the evader’s velocity is always identically 
one, this implies a discontinuity in GE , verifying that Theorem 1 is in keeping with 
the results of Bollobás et al.

9 � Conclusion

The results of this paper nearly close the book on the equal-speed, strict-capture lion 
and man problem, extending the results of Besicovitch, Littlewood, and others to the 
general category of Riemannian manifolds with boundary. Further abstraction is of 
course still possible, for instance by dismissing the manifold structure entirely and 
allowing consideration of more general geodesic metric spaces. In particular, some 
(though not all) of the comparison theorems used in this paper have analogues in the 
CAT(k) environment.

A fundamental characteristic of the equal-speed, strict-capture pursuit prob-
lem considered here is its local nature. Throughout this paper, the evader has had 
the luxury of waiting until the purser entered into a sufficiently small arena before 
applying the local results of Riemannian geometry to its advantage. In Sect. 3, we 
saw that such techniques are necessary to treat equal-speed strict-capture problems, 
while Sects. 5–7 established that they are also quite sufficient.
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